
Quick Start

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001
www.borland.com

Borland®

Delphi™ 7
for Windows™

Refer to the DEPLOY document located in the root directory of your Delphi 7 product for a complete list of files that
you can distribute in accordance with the Delphi License Statement and Limited Warranty.

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. Please refer to the product CD or the
About dialog box for the list of applicable patents.

COPYRIGHT © 1983–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

HDE1370WW21000 7E5R0802
0203040506-9 8 7 6 5 4 3 2 1
D3

Contents

Chapter 1
Introduction 1-1
What is Delphi? 1-1
Registering Delphi 1-2
Finding information 1-3

Online Help 1-4
F1 Help . 1-4

Developer support services and Web site 1-5
Typographic conventions 1-6

Chapter 2
A tour of the environment 2-1
Starting Delphi 2-1
The IDE . 2-2
The menus and toolbars. 2-3
The Component Palette, Form

Designer, and Object Inspector 2-4
The Object TreeView 2-5
The Object Repository 2-6
The Code Editor 2-7

Code Insight 2-7
Class Completion 2-8
Code Browsing 2-8

The Diagram page 2-9
Viewing form code 2-11

The Code Explorer2-12
The Project Manager 2-13
The Project Browser 2-13
To-do lists . 2-14

Chapter 3
Programming with Delphi 3-1
Creating a project 3-1

Adding data modules 3-2
Building the user interface 3-2

Placing components on a form 3-2
Setting component properties. 3-3

Writing code . 3-5
Writing event handlers 3-5
Using the component library 3-5

Compiling and debugging projects 3-6
Deploying applications. 3-8
Internationalizing applications 3-8
Types of projects 3-8

CLX applications 3-9
Web server applications 3-9
Database applications. 3-10

BDE Administrator 3-11
SQL Explorer (Database Explorer) 3-11
Database Desktop 3-11
Data Dictionary 3-11

Custom components 3-11
DLLs . 3-12
COM and ActiveX. 3-12

Type libraries 3-12

Chapter 4
Customizing the desktop 4-1
Organizing your work area 4-1

Arranging menus and toolbars 4-1
Docking tool windows 4-2
Saving desktop layouts 4-4

Customizing the Component palette 4-5
Arranging the Component palette. 4-5
Creating component templates 4-6
Installing component packages 4-6

Using frames 4-7
Adding ActiveX controls 4-8

Setting project options 4-8
Setting default project options 4-8

Specifying project and form
templates as the default 4-8

Adding templates to the
Object Repository 4-9

Setting tool preferences. 4-10
Customizing the Form Designer. 4-10
Customizing the Code Editor 4-11
Customizing the Code Explorer 4-11

Index I-1
iii

iv

C h a p t e r

1
Chapter1Introduction

This Quick Start provides an overview of the Delphi development environment to get
you started using the product right away. It also tells you where to look for details
about the tools and features available in Delphi.

Chapter 2, “A tour of the environment” describes the main tools on the Delphi
desktop, or integrated desktop environment (IDE). Chapter 3, “Programming with
Delphi” explains how you use some of these tools to create an application. Chapter 4,
“Customizing the desktop” describes how you can customize the Delphi IDE for
your development needs.

For step-by-step instructions on using Delphi to write programs such as a text editor
or database application, see the online Help (“Tutorials” in the Contents) or the
tutorial PDF files in the Delphi installation directory.

What is Delphi?
Delphi is an object-oriented, visual programming environment for rapid application
development (RAD). Using Delphi, you can create highly efficient applications for
Microsoft Windows XP, Microsoft Windows 2000 and Microsoft Windows 98 with a
minimum of manual coding. Delphi also provides a simple cross-platform solution
when used in conjunction with Kylix, Borland’s RAD tool for Linux. Delphi provides
all the tools you need to develop, test, and deploy applications, including a large
library of reusable components, a suite of design tools, application and form
templates, and programming wizards.
I n t r o d u c t i o n 1-1

R e g i s t e r i n g D e l p h i
Registering Delphi
Delphi can be registered in several ways. The first time you launch Delphi after
installation, you will be prompted to enter your serial number and authorization key.
Once this has been entered, a registration dialog offers four choices:

• Register using your internet connection.

Use this option to register online using your existing internet connection.

• Register by phone or Web browser.

Use this option to register by phone or through your web browser. If you received
an activation key via email, use this option to select the file.

• Import software activation information from a file or email.

• Register later.

Online registration is the easiest way to register Delphi, but it requires that you have
an active connection to the internet. If you are already a member of the Borland
Community, or have an existing software registration account, simply enter the
relevant account information. This will automatically register Delphi. If not, the
registration process provides a way to create an account.
1-2 Q u i c k S t a r t

F i n d i n g i n f o r m a t i o n
The second option (register by phone or Web page) is useful if the machine you are
installing on is not connected to the internet, or if you are behind a firewall that is
blocking online registration.

If you have previously received software activation information, you can select the
Import software activation information from a file or email option and select the
activation.slip file on your system.

Note Unless you have a specific reason not to, use the online registration option.

Finding information
You can find information on Delphi in the following ways:

• Online Help
• Printed documentation
• Borland developer support services and Web site

For information about new features in this release, refer to What’s New in the online
Help Contents and to the www.borland.com Web site.
I n t r o d u c t i o n 1-3

F i n d i n g i n f o r m a t i o n
Online Help

The online Help system provides detailed information about user interface features,
language implementation, programming tasks, and the components. It includes all
the material in the Delphi Developer’s Guide, Delphi Language Guide, and a host of Help
files for other features bundled with Delphi.

To view the table of contents, choose Help|Delphi Help and Help|Delphi Tools, and
click the Contents tab. To look up the components or any other topic, click the Index
or Find tab and type your request.

F1 Help

You can get context-sensitive Help on any part of the development environment,
including menu items, dialog boxes, toolbars, and components by selecting the item
and pressing F1.

Press F1 on a property or
event name in the Object
Inspector to display the
VCL Help.

In the Code editor, press
F1 on a language, VCL, or
CLX element.
1-4 Q u i c k S t a r t

D e v e l o p e r s u p p o r t s e r v i c e s a n d W e b s i t e
Pressing the Help button in any dialog box also displays context-sensitive online
documentation.

Error messages from the compiler and linker appear in a special window below the
Code editor. To get Help with compilation errors, select a message from the list and
press F1.

Developer support services and Web site
Borland offers a variety of support options to meet the needs of its diverse developer
community. To find out about support, refer to
http://www.borland.com/devsupport/.

From the Web site, you can access many newsgroups where Delphi developers
exchange information, tips, and techniques. The site also includes a list of books
about Delphi, additional Delphi technical documents, and Frequently Asked
Questions (FAQs).

Press F1 on a
component on a form.

Press F1 on any
menu command,
dialog box, or
window to display
Help on that item.
I n t r o d u c t i o n 1-5

T y p o g r a p h i c c o n v e n t i o n s
Typographic conventions
This manual uses the typefaces described below to indicate special text.

Table 1.1 Typographic conventions

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent Delphi identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit a
menu.”
1-6 Q u i c k S t a r t

C h a p t e r

2
Chapter2A tour of the environment

This chapter explains how to start Delphi and gives you a quick tour of the main
parts and tools of the integrated development environment (IDE).

Starting Delphi
You can start Delphi in the following ways:

• Double-click the Delphi icon (if you’ve created a shortcut).
• Choose Programs|Borland Delphi 7|Delphi 7 from the Windows Start menu.
• Choose Run from the Windows Start menu, then enter Delphi32.
• Double-click Delphi32.exe in the Delphi\Bin directory.
A t o u r o f t h e e n v i r o n m e n t 2-1

T h e I D E
The IDE
When you first start Delphi, you’ll see some of the major tools in the IDE. In Delphi,
the IDE includes the menus, toolbars, Component palette, Object Inspector, Object
TreeView, Code editor, Code Explorer, Project Manager, and many other tools. The
particular features and components available to you will depend on which edition of
Delphi you’ve purchased.

Delphi’s development model is based on two-way tools. This means that you can
move back and forth between visual design tools and text-based code editing. For
example, after using the Form Designer to arrange buttons and other elements in a
graphical interface, you can immediately view the form file that contains the textual
description of your form. You can also manually edit any code generated by Delphi
without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can design
graphical interfaces, browse through class libraries, write code, and compile, test,
debug, and manage projects without leaving the IDE.

To learn about organizing and configuring the IDE, see Chapter 4, “Customizing the
desktop.”

The Component palette
contains ready-made
components to add to
your projects.

Code editor displays
code to view and edit.

The Form Designer
contains a blank form
on which to start
designing the user
interface for your
application. An
application can include
several forms.

The Code Explorer shows you the classes, variables, and
routines in your unit and lets you navigate quickly.

The Object Inspector is
used to change objects’
properties and select event
handlers.

The Object TreeView displays a
hierarchical view of your components’
parent-child relationships.

The menus and toolbars access a host of features
and tools to help you write an application.
2-2 Q u i c k S t a r t

T h e m e n u s a n d t o o l b a r s
The menus and toolbars
The main window, which occupies the top of the screen, contains the main menu,
toolbars, and Component palette.

Delphi’s toolbars provide quick access to frequently used operations and commands.
Most toolbar operations are duplicated in the drop-down menus.

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbars are also customizable. You can add commands you want to them or
move them to different locations. For more information, see “Arranging menus and
toolbars” on page 4-1 and “Saving desktop layouts” on page 4-4.

For more information...
If you need help on any menu option, point to it and press F1.

Main window
in its default
arrangement

You can use the right-click
menu to hide any toolbar. To
display a toolbar if it’s not
showing, choose View|Toolbars
and check the one you want.

To find out what a button does,
point to it for a moment until a
tooltip appears.

Run

Open
project

Save all Add file
to project

Open

Save

New
form

Remove
file from
projectNew

Toggle
form/unit

View
form

View
unit

Standard toolbar

Pause

Trace
into

Step over

View toolbar

Debug toolbar

List of projects
you can run

Desktops toolbar

Name of saved
desktop layout

Set debug
desktop

Save current
desktop

New WebSnap
Page Module

New WebSnap
Data Module

External
Editor

Internet toolbar

New WebSnap
Application
A t o u r o f t h e e n v i r o n m e n t 2-3

T h e C o m p o n e n t P a l e t t e , F o r m D e s i g n e r , a n d O b j e c t I n s p e c t o r
The Component Palette, Form Designer, and Object Inspector
The Component palette, Form Designer, Object Inspector, and Object TreeView work
together to help you build a user interface for your application.

The Component palette includes tabbed pages with groups of icons representing visual
or nonvisual components. The pages divide the components into various functional
groups. For example, the Standard, Additional, and Win32 pages include windows
controls such as an edit box and up/down button; the Dialogs page includes
common dialog boxes to use for file operations such as opening and saving files.

Each component has specific attributes—properties, events, and methods—that
enable you to control your application.

After you place components on the form, or Form Designer, you can arrange
components the way they should look on your user interface. For the components
you place on the form, use the Object Inspector to set design-time properties, create
event handlers, and filter visible properties and events, making the connection
between your application’s visual appearance and the code that makes your
application run. See “Placing components on a form” on page 3-2.

For more information...
See “Component palette” in the online Help index.

Component palette pages, grouped by function

Components

Click to view
more pages

After you place components on a form, the Object Inspector dynamically
changes the set of properties it displays, based on the component selected.
2-4 Q u i c k S t a r t

T h e O b j e c t T r e e V i e w
The Object TreeView
The Object TreeView displays a component’s sibling and parent-child relationships
in a hierarchical, or tree diagram. The tree diagram is synchronized with the Object
Inspector and the Form Designer so that when you change focus in the Object
TreeView, both the Object Inspector and the form change focus.

You can use the Object TreeView to change related components’ relationships to each
other. For example, if you add a panel and check box component to your form, the
two components are siblings. But in the Object TreeView, if you drag the check box
on top of the panel icon, the check box becomes the child of the panel.

If an object’s properties have not been completed, the Object TreeView displays a red
question mark next to it. You can also double-click any object in the tree diagram to
open the Code editor to a place where you can write an event handler.

If the Object TreeView isn’t displayed, choose View|Object TreeView.

The Object TreeView is especially useful for displaying the relationships between
database objects.

For more information...
See “Object TreeView” in the online Help index.

The Object TreeView,
Object Inspector, and the
Form Designer work
together. When you click an
object on your form, it
automatically changes the
focus in both the Object
TreeView and the Object
Inspector and vice versa.

Press Alt-Shift-F11 to focus
on the Object TreeView.
A t o u r o f t h e e n v i r o n m e n t 2-5

T h e O b j e c t R e p o s i t o r y
The Object Repository
The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,
sample applications, and other items that can simplify development. Choose File|
New|Other to display the New Items dialog box when you begin a project. The New
Items dialog box is the same as the Object Repository. Check the Repository to see if
it contains an object that resembles one you want to create.

To edit or remove objects from the Object Repository, either choose Tools|Repository
or right-click in the New Items dialog box and choose Properties.

To add project and form templates to the Object Repository, see “Adding templates
to the Object Repository” on page 4-9.

For more information...
See “Object Repository” in the online Help index. The objects available to you will
depend on which edition of Delphi you purchased.

The Repository’s tabbed pages include
objects like forms, frames, units, and
wizards to create specialized items.

When you’re creating an item based on
one from the Object Repository, you
can copy, inherit, or use the item:

Copy (the default) creates a copy of
the item in your project. Inherit means
changes to the object in the Repository
are inherited by the one in your project.
Use means changes to the object in
your project are inherited by the object
in the Repository.

You can add, remove, or
rename tabbed pages from
the Object Repository.

Click the arrows to change
the order in which a tabbed
page appears in the New
Items dialog box.
2-6 Q u i c k S t a r t

T h e C o d e E d i t o r
The Code Editor
As you design the user interface for your application, Delphi generates the
underlying Delphi code. When you select and modify the properties of forms and
objects, your changes are automatically reflected in the source files. You can add code
to your source files directly using the built-in Code editor, which is a full-featured
ASCII editor. Delphi provides various aids to help you write code, including the
Code Insight tools, class completion, and code browsing.

Code Insight
The Code Insight tools display context-sensitive pop-up windows.

Table 2.1 Code Insight tools

Tool How it works

Code completion Type a class name followed by a dot (.) to display a list of
properties, methods, and events appropriate to the class, select it,
and press Enter. In the interface section of your code you can
select more than one item. Type the beginning of an assignment
statement and press Ctrl+space to display a list of valid values for
the variable. Type a procedure, function, or method name to
bring up a list of arguments.

Code parameters Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

Tooltip expression evaluation While your program has paused during debugging, point to any
variable to display its current value.

Tooltip symbol insight While editing code, point to any identifier to display its
declaration.

Code templates Press Ctrl+J to see a list of common programming statements that
you can insert into your code. You can create your own templates
in addition to the ones supplied with Delphi.

Components added
to the form are
reflected in the code.

Generated
code.
A t o u r o f t h e e n v i r o n m e n t 2-7

T h e C o d e E d i t o r
To turn these tools on or off, choose Tools|Editor Options and click the Code Insight
tab. Check or uncheck the tools in the Automatic features section.

Class Completion
Class completion generates skeleton code for classes. Place the cursor anywhere
within a class declaration of the interface section of a unit and press Ctrl+Shift+C or
right-click and choose Complete Class at Cursor. Delphi automatically adds private
read and write specifiers to the declarations for any properties that require them,
then creates skeleton code for all the class’s methods. You can also use class
completion to fill in class declarations for methods you’ve already implemented.

To turn on class completion, choose Tools|Environment Options, click the Explorer
tab, and make sure Finish incomplete properties is checked.

For more information...
See “Code Insight” and “class completion” in the online Help index.

Code Browsing
While passing the mouse over the name of any class, variable, property, method, or
other identifier, the pop-up menu called Tooltip Symbol Insight displays where the
identifier is declared. Press Ctrl and the cursor turns into a hand, the identifier turns
blue and is underlined, and you can click to jump to the definition of the identifier.

With code completion, when you type the dot
in Button1. Delphi displays a list of
properties, methods, and events for the class.
As you type, the list automatically filters to the
selection that pertains to that class. Select an
item on the list and press Enter to add it to
your code.

Procedures and properties are colored as teal
and functions as blue.

You can sort this list alphabetically by right-
clicking and clicking Sort by Name.

The tooltip symbol insight displays declaration
information for any identifier when you pass
the mouse over it.
2-8 Q u i c k S t a r t

T h e C o d e E d i t o r
The Code editor has forward and back buttons like the ones on Web browsers. As
you jump to these definitions, the Code editor keeps track of where you’ve been in
the code. You can click the drop-down arrows next to the Forward and Back buttons
to move forward and backward through a history of these references.

You can also move between the declaration of a procedure and its implementation by
pressing Ctrl+Shift+↑ or Ctrl+Shift+↓.

To customize your code editing environment, see “Customizing the Code Editor” on
page 4-11.

For more information...
See “Code editor” in the online Help index.

The Diagram page

The bottom of the Code editor may contain one or more tabs, depending on which
edition of Delphi you have. The Code page, where you write all your code, appears
in the foreground by default. The Diagram page displays icons and connecting lines
representing the relationships between the components you place on a form or data
module. These relationships include siblings, parent to children, or components to
properties.

Click the back arrow to
return to the last place
you were working in
your code. Then click
the forward arrow to
move forward again.

Press Ctrl and click or right-click and click Find
Declaration to jump to the definition of the identifier.

The Code editor maintains a list of the definitions you
jumped to.
A t o u r o f t h e e n v i r o n m e n t 2-9

T h e C o d e E d i t o r
To create a diagram, click the Diagram page. From the Object TreeView, simply drag
one or multiple icons to the Diagram page to arrange them vertically. To arrange
them horizontally, press Shift while dragging. When you drag icons with parent-
children or component-property dependencies onto the page, the lines, or connectors,
that display the dependent relationships are automatically added. For example, if
you add a dataset component to a data module and drag the dataset icon plus its
property icons to the Diagram page, the property connector automatically connects
the property icons to the dataset icon.

For components that don’t have dependent relationships but where you want to
show one, use the toolbar buttons at the top of the Diagram page to add one of four
connector types, including allude, property, master/detail, and lookup. You can also
add comment blocks that connect to each other or to a relevant icon.

You can type a name and description for your diagram, save the diagram, and print it
when you are finished.

For more information...
See “diagram page” in the online Help index.

Use the Diagram page
toolbar buttons—Property,
Master/Detail and Lookup—
to designate the relationship
between components and
components and their
properties. The appearance
of the connecting line varies
for each type of relationship.

Click the Comment block
button to add a comment,
and the Allude connector
button to draw a connection
to another comment or icon.

From the Object TreeView, drag
the icons of the components to
the Diagram page.

To view other diagrams you’ve named in the
current project, click the drop-down list box.

Type a name and description for your
diagram.
2-10 Q u i c k S t a r t

Viewing form code

Forms are a very visible part of most Delphi projects—they are where you design the
user interface of an application. Normally, you design forms using Delphi‘s visual
tools, and Delphi stores the forms in form files. Form files (.dfm, or .xfm for a CLX
application) describe each component in your form, including the values of all
persistent properties. To view and edit a form file in the Code editor, right-click the
form and select View as Text. To return to the graphic view of your form, right-click
and choose View as Form.

You can save form files in either text (the default) or binary format. Choose Tools|
Environment Options, click the Designer page, and check or uncheck the New forms
as text check box to designate which format to use for newly created forms.

For more information...
See “form files” in the online Help index.izizi

Use View As
Text to view a
text description
of the form’s
attributes in the
Code editor.
A t o u r o f t h e e n v i r o n m e n t 2-11

The Code Explorer
When you open Delphi, the Code Explorer is docked to the left of the Code editor
window, depending on whether the Code Explorer is available in the edition of
Delphi you have. The Code Explorer displays the table of contents as a tree diagram
for the source code open in the Code editor, listing the types, classes, properties,
methods, global variables, and routines defined in your unit. It also shows the other
units listed in the uses clause.

You can use the Code Explorer to navigate in the Code editor. For example, if you
double-click a method in the Code Explorer, a cursor jumps to the definition in the
class declaration in the interface part of the unit in the Code editor.

To configure how the Code Explorer displays its contents, choose Tools|
Environment Options and click the Explorer tab.

For more information...
See “Code Explorer” in the online Help index.

Double-click an item in the Code
Explorer and the cursor moves to
that item’s implementation in the
Code editor. Press Ctrl+Shift+E to
move the cursor back and forth
between the last place you were in
the Code Explorer and Code editor.

Each item in the Code Explorer has
an icon that designates its type.
2-12 Q u i c k S t a r t

The Project Manager
When you first start Delphi, it automatically opens a new project. A project includes
several files that make up the application or DLL you are going to develop. You can
view and organize these files—such as form, unit, resource, object, and library files—
in a project management tool called the Project Manager. To display the Project
Manager, choose View|Project Manager.

You can use the Project Manager to combine and display information on related
projects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. To change project
options, such as compiling a project, see “Setting project options” on page 4-8.

For more information...
See “Project Manager” in the online Help index.

The Project Browser
The Project Browser examines a project in detail. The Browser displays classes, units,
and global symbols (types, properties, methods, variables, and routines) your project
declares or uses in a tree diagram. Choose View|Browser to display the Project
Browser.

The Project Browser has two
resizeable panes: the
Inspector pane (on the left)
and the Details pane. The
Inspector pane has three tabs
for globals, classes, and units.

Globals displays classes,
types, properties, methods,
variables, and routines.

Classes displays classes in a
hierarchical diagram.

Units displays units, identifiers
declared in each unit, and the
other units that use and are
used by each unit.
A t o u r o f t h e e n v i r o n m e n t 2-13

By default, the Project Browser displays the symbols from units in the current project
only. You can change the scope to display all symbols available in Delphi. Choose
Tools|Environment Options, and on the Explorer page, check All symbols.

For more information...
See “Project Browser” in the online Help index.

To-do lists
To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items
directly in the source code. Choose View|To-Do List to add or view information
associated with a project.

For more information...
See “to-do lists” in the online Help index.

Right-click on a to-do list to
display commands that let you
sort and filter the list.

Click the check
box when you’re
done with an item.
2-14 Q u i c k S t a r t

C h a p t e r

3
Chapter3Programming with Delphi

The following sections provide an overview of software development with Delphi,
including creating a project, working with forms, writing code, and compiling,
debugging, deploying, and internationalizing applications, and including the types
of projects you can develop.

Creating a project
A project is a collection of files that are either created at design time or generated
when you compile the project source code. When you first start Delphi, a new project
opens. It automatically generates a project file (Project1.dpr), unit file (Unit1.pas),
and resource file (Unit1.dfm; Unit1.xfm for CLX applications), among others.

If a project is already open but you want to open a new one, choose either File|New|
Application or File|New|Other and double-click the Application icon. File|New|
Other opens the Object Repository, which provides additional forms, modules, and
frames as well as predesigned templates such as dialog boxes to add to your project.
To learn more about the Object Repository, see “The Object Repository” on page 2-6.

When you start a project, you have to know what you want to develop, such as an
application or DLL. To read about what types of projects you can develop with
Delphi, see “Types of projects” on page 3-8.

For more information...
See “projects” in the online Help index.
P r o g r a m m i n g w i t h D e l p h i 3-1

B u i l d i n g t h e u s e r i n t e r f a c e
Adding data modules

A data module is a type of form that contains nonvisual components only. Nonvisual
components can be placed on ordinary forms alongside visual components. But if
you plan on reusing groups of database and system objects, or if you want to isolate
the parts of your application that handle database connectivity and business rules,
data modules provide a convenient organizational tool.

To create a data module, choose File|New|Data Module. Delphi opens an empty
data module, which displays an additional unit file for the module in the Code
editor, and adds the module to the current project as a new unit. Add nonvisual
components to a data module in the same way as you would to a form.

When you reopen an existing data module, Delphi displays its components.

For more information...
See “data modules” in the online Help index.

Building the user interface
With Delphi, you first create a user interface (UI) by selecting components from the
Component palette and placing them on the main form.

Placing components on a form

To place components on a form, either:

1 Double-click the component; or
2 Click the component once and then click the form where you want the component

to appear.

Double-click a nonvisual
component on the Component
palette to place the component in
the data module.

Click a component on the Component palette.
3-2 Q u i c k S t a r t

B u i l d i n g t h e u s e r i n t e r f a c e
Select the component and drag it to wherever you want on the form.

For more information...
See “Component palette” in the online Help index.

Setting component properties

After you place components on a form, set their properties and code their event
handlers. Setting a component’s properties changes the way a component appears
and behaves in your application. When a component is selected on a form, its
properties and events are displayed in the Object Inspector.

Then click where you want to place it on the form.
Or choose a
component from
an alphabetical
list.

Or use this drop-down list to
select an object. Here,
Button1 is selected, and its
properties are displayed.

You can also click a plus sign to open a detail list.

Select a property and
change its value in the
right column.

Click an ellipsis to open
a dialog box where you
can change the
properties of a helper
object.

You can select a
component, or object, on
the form by clicking on it.
P r o g r a m m i n g w i t h D e l p h i 3-3

B u i l d i n g t h e u s e r i n t e r f a c e
Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex
values. When you click on such a property value, you’ll see an ellipsis. For some
properties, such as size, enter a value.

When more than one component is selected in the form, the Object Inspector displays
all properties that are shared among the selected components.

The Object Inspector also supports expanded inline component references. This
provides access to the properties and events of a referenced component without
having to select the referenced component itself. For example, if you add a button
and pop-up menu component to your form, when you select the button component,
in the Object Inspector you can set the PopupMenu property to PopupMenu1, which
displays all of the pop-up menu’s properties.

For more information...
See “Object Inspector” in the online Help index.

Double-click here to
change the value from
True to False.

Click on the down arrow to select from a list
of valid values.

Click any ellipsis to
display a property
editor for that property.

Set the Button
component’s
PopupMenu property
to PopupMenu1, and
all of the popup
menu’s properties
appear when you
click the plus sign (+).

Inline component
references are
colored red, and their
subproperties are
colored green.
3-4 Q u i c k S t a r t

W r i t i n g c o d e
Writing code
An integral part of any application is the code behind each component. While
Delphi’s RAD environment provides most of the building blocks for you, such as
preinstalled visual and nonvisual components, you will usually need to write event
handlers, methods, and perhaps some of your own classes. To help you with this
task, you can choose from thousands of objects in the class library. To work with your
source code, see “The Code Editor” on page 2-7.

Writing event handlers

Your code may need to respond to events that might occur to a component at
runtime. An event is a link between an occurrence in the system, such as clicking a
button, and a piece of code that responds to that occurrence. The responding code is
an event handler. This code modifies property values and calls methods.

To view predefined event handlers for a component on your form, select the
component and, on the Object Inspector, click the Events tab.

For more information...
See “events” in the online Help index.

Using the component library

Delphi comes with a component library made up of objects, some of which are also
components or controls, that you use when writing code. You can use VCL
components for Windows applications and CLX components for Windows and
Linux applications. The component library includes objects that are visible at
runtime—such as edit controls, buttons, and other user interface elements—as well

Select an existing event
handler from the drop-
down list.

Or double-click in the
value column, and Delphi
generates skeleton code
for the new event
handler.

Here, Button1 is selected and its type is displayed: TButton.
Click the Events tab in the Object Inspector to see the
events that the Button component can handle.
P r o g r a m m i n g w i t h D e l p h i 3-5

C o m p i l i n g a n d d e b u g g i n g p r o j e c t s
as nonvisual controls like datasets and timers. The following diagram shows some of
the principal classes that make up the VCL hierarchy. The CLX hierarchy is similar.

Objects descended from TComponent have properties and methods that allow them to
be installed on the Component palette and added to Delphi forms and data modules.
Because the components are hooked into the IDE, you can use tools like the Form
Designer to develop applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a button control, you
don’t have to write code to handle generated events when the button is clicked; you
are responsible only for the application logic that executes in response to the click
itself.

Most editions of Delphi come with the component library source code and examples
of Delphi programming techniques.

For more information...
See “Visual Component Library Reference” and “CLX Reference” in the Help
contents and “VCL” in the online Help index. See http://www.borland.com/delphi
for open source and licensing options on CLX.

Compiling and debugging projects
After you have written your code, you will need to compile and debug your project.
With Delphi, you can either compile your project first and then separately debug it,
or you can compile and debug in one step using the integrated debugger. To compile
your program with debug information, choose Project|Options, click the Compiler
page, and make sure Debug information is checked.

TObject

TPersistentTStreamException

TComponent TStringsTGraphicTGraphicsObject

TControl TCommonDialogTMenuTDataSet

TWinControlTGraphicControl

TCustomControlTScrollingWinControl

TApplication

TComObject

TCollection

TField

TInterface

TCustomForm

Most visual controls inherit
from TWinControl or in
CLX, TWidgetControl.
3-6 Q u i c k S t a r t

C o m p i l i n g a n d d e b u g g i n g p r o j e c t s
Delphi uses an integrated debugger so that you can control program execution,
watch variables, and modify data values. You can step through your code line by
line, examining the state of the program at each breakpoint. To use the integrated
debugger, choose Tools|Debugger Options, click the General page, and make sure
Integrated debugging is checked.

You can begin a debugging session in the IDE by clicking the Run button on the
Debug toolbar, choosing Run|Run, or pressing F9.

With the integrated debugger, many debugging windows are available, including
Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and
Event Log. Display them by choosing View|Debug Windows. Not all debugger
views are available in all editions of Delphi.

To learn how to combine debugging windows for more convenient use, see “Docking
tool windows” on page 4-2.

Once you set up your desktop as you like it for debugging, you can save the settings
as the debugging or runtime desktop. This desktop layout will be used whenever
you are debugging any application. For details, see “Saving desktop layouts” on
page 4-4.

For more information...
See “debugging” and “integrated debugger” in the online Help index.

Run button

Choose any of the debugging
commands from the Run
menu. Some commands are
also available on the toolbar.

You can combine several
debugging windows for
easier use.
P r o g r a m m i n g w i t h D e l p h i 3-7

D e p l o y i n g a p p l i c a t i o n s
Deploying applications
You can make your application available for others to install and run by deploying it.
When you deploy an application, you will need all the required and supporting files,
such as the executables, DLLs, package files, and helper applications. Delphi comes
bundled with a setup toolkit called InstallShield Express that helps you create an
installation program with these files. To install InstallShield Express, from the Delphi
setup screen, choose InstallShield Express Custom Edition for Delphi.

For more information...
See “deploying, applications” in the online Help index.

Internationalizing applications
Delphi offers several features for internationalizing and localizing applications. The
IDE and the VCL support input method editors (IMEs) and extended character sets to
internationalize your project. Delphi includes a translation suite, not available in all
editions of Delphi, for software localization and simultaneous development for
different locales. With the translation suite, you can manage multiple localized
versions of an application as part of a single project.

The translation suite includes three integrated tools:

• Resource DLL wizard, a DLL wizard that generates and manage resource DLLs.
• Translation Manager, a table for viewing and editing translated resources.
• Translation Repository, a shared database to store translations.

To open the Resource DLL wizard, choose File|New|Other and double-click the
Resource DLL Wizard icon. To configure the translation tools, choose Tools|
Translation Tools Options.

For more information...
See “international applications” in the online Help index.

Types of projects
All editions of Delphi support general-purpose 32-bit Windows programming, DLLs,
packages, custom components, multithreading, COM (Component Object Model)
and automation controllers, and multiprocess debugging. Some editions support
server applications such as Web server applications, database applications, COM
servers, multi-tiered applications, CORBA, and decision-support systems.

For more information...
To see what tools your edition supports, refer to the feature list on
www.borland.com/delphi.
3-8 Q u i c k S t a r t

T y p e s o f p r o j e c t s
CLX applications

You can use Delphi, to develop cross-platform 32-bit applications that run on both the
Windows and Linux operating systems. To develop a CLX application, choose File|
New|CLX Application. The IDE is similar to that of a regular Delphi application,
except that only the components and items you can use in a CLX application appear
on the Component palette and in the Object Repository. Windows-specific features
supported on Delphi will not port directly to Linux environments.

For more information...
To see which components are available for developing cross-platform applications,
see “CLX Reference” in the online Help contents.

Web server applications

A Web server application works with a Web server by processing a client’s request
and returning an HTTP message in the form of a Web page. To publish data for the
Web, Delphi includes two different technologies, depending on what edition of
Delphi you have.

Delphi’s oldest Web server application technology is called Web Broker. Web Broker
applications can dispatch requests, perform actions, and return Web pages to users.
Most of the business logic of an application is defined in event handlers written by
the application developer. To create a Web Broker Web server application, choose
File|New|Other and double-click the Web Server Application icon. You can add
components to your Web module from the Internet and InternetExpress pages of the
Component palette.

WebSnap adds to this functionality with adapters, additional dispatchers, additional
page producers, session support, and Web page modules. These extra features are
designed to handle common Web server application tasks automatically. WebSnap
development is more visual and simple than Web Broker development. A WebSnap
application developer can spend more time designing the business logic of an
application, and less time writing event handlers for common page transfer tasks. To
create a new WebSnap server application, select File|New|Other, click the WebSnap
page, and double-click the WebSnap Application icon. You can add WebSnap
components from the WebSnap page of the Component palette.
P r o g r a m m i n g w i t h D e l p h i 3-9

T y p e s o f p r o j e c t s
For more information...
See “Web applications” in the online Help index.

Database applications

Delphi offers a variety of database and connectivity tools to simplify the
development of database applications.

To create a database application, first design your interface on a form using the Data
Controls page components. Second, add a data source to a data module using the
Data Access page. Third, to connect to various database servers, add a dataset and
data connection component to the data module from the previous or corresponding
pages of the following connectivity tools:

• dbExpress is a collection of database drivers for cross-platform applications that
provide fast access to SQL database servers, including DB2, Informix, InterBase,
MSSQL, MySQL, and Oracle. With a dbExpress driver, you can access databases
using unidirectional datasets.

• The Borland Database Engine (BDE) is a collection of drivers that support many
popular database formats, including dBASE, Paradox, FoxPro, Microsoft Access,
and any ODBC data source.

• ActiveX Data Objects (ADO) is Microsoft's high-level interface to any data source,
including relational and nonrelational databases, e-mail and file systems, text and
graphics, and custom business objects.

• InterBase Express (IBX) components are based on the custom data access Delphi
component architectures. IBX applications provide access to advanced InterBase
features and offer the highest performance component interface for InterBase 5.5
and later. IBX is compatible with Delphi’s library of data-aware components.

Certain database connectivity tools are not available in all editions of Delphi.

You can create an
application to run on
various Web server
application types,
including a test server to
help you debug your Web
server application.

Choose whether you
want a data module or a
page module, which
displays your HTML page
as you work.

You can also access the
WebSnap Application data
module by choosing View|
Toolbars|Internet, and
clicking the New WebSnap
Application icon.
3-10 Q u i c k S t a r t

T y p e s o f p r o j e c t s
For more information...
See “database applications” in the online Help index.

BDE Administrator
Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the
aliases used by data-aware VCL controls to connect to databases.

For more information...
From the Windows Start menu, choose Programs|Borland Delphi 7|BDE
Administrator. Then choose Help|Contents.

SQL Explorer (Database Explorer)
The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it
to create database aliases, view schema information, execute SQL queries, and
maintain data dictionaries and attribute sets.

For more information...
From the Delphi main menu, choose Database|Explore. Then choose Help|
Contents. Or see “Database Explorer” in the online Help index.

Database Desktop
The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and
dBase database tables in a variety of formats.

For more information...
From the Windows Start menu, choose Programs|Borland Delphi 7|Database
Desktop. Then choose Help|User’s Guide Contents.

Data Dictionary
When you use the BDE, the Data Dictionary provides a customizable storage area,
independent of your applications, where you can create extended field attribute sets
that describe the content and appearance of data. The Data Dictionary can reside on a
remote server to share additional information.

For more information...
Choose Help|Delphi Tools to see “Data Dictionary.”

Custom components

The components that come with Delphi are preinstalled on the Component palette
and offer a range of functionality that should be sufficient for most of your
development needs. You could program with Delphi for years without installing a
new component, but you may sometimes want to solve special problems or display
particular kinds of behavior that require custom components. Custom components
promote code reuse and consistency across applications.
P r o g r a m m i n g w i t h D e l p h i 3-11

T y p e s o f p r o j e c t s
You can either install custom components from third-party vendors or create your
own. To create a new component, choose Component|New Component to display
the New Component wizard. To install components provided by a third party, see
“Installing component packages” on page 4-6.

For more information...
See Part V, “Creating custom components,” in the Developer’s Guide and
“components, creating” in the online Help index.

DLLs

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be
called by applications and by other DLLs. A DLL contains code or resources typically
used by more than one application. Choose File|New|Other and double-click the
DLL Wizard icon to create a template for a DLL.

For more information...
See “DLLs” in the online Help index.

COM and ActiveX

Delphi supports Microsoft’s COM standard and provides wizards for creating
ActiveX controls. Choose File|New|Other and click the ActiveX tab to access the
wizards. Sample ActiveX controls are installed on the ActiveX page of the
Component palette. Numerous COM server components are provided on the Servers
tab of the Component palette. You can use these components as if they were VCL
components. For example, you can place one of the Microsoft Word components onto
a form to bring up an instance of Microsoft Word within an application interface.

For more information...
See “COM” and “ActiveX” in the online Help index.

Type libraries
Type libraries are files that include information about data types, interfaces, member
functions, and object classes exposed by an ActiveX control or server. By including a
type library with your COM application or ActiveX library, you make information
about these entities available to other applications and programming tools. Delphi
provides a Type Library editor for creating and maintaining type libraries.

For more information...
See “type libraries” in the online Help index.
3-12 Q u i c k S t a r t

C h a p t e r

4
Chapter4Customizing the desktop

This chapter explains some of the ways you can customize the tools in Delphi’s IDE.

Organizing your work area
The IDE provides many tools to support development, so you’ll want to reorganize
your work area for maximum convenience. You can rearrange menus and toolbars,
combine tool windows, and save your new desktop layout.

Arranging menus and toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette
by clicking the grabber on the left-hand side of each one and dragging it to another
location.

You can move menus and toolbars within the main window. Drag the
grabber (the double bar on the left) of an individual toolbar to move it.
C u s t o m i z i n g t h e d e s k t o p 4-1

O r g a n i z i n g y o u r w o r k a r e a
You can separate parts from the main window and place them elsewhere on the
screen or remove them from the desktop altogether. This is useful if you have a dual
monitor setup.

You can add or delete tools from the toolbars by choosing View|Toolbars|
Customize. Click the Commands page, select a category, select a command, and drag
it to the toolbar where you want to place it.

For more information...
See “toolbars, customizing” in the online Help index.

Docking tool windows

You can open and close individual tool windows and arrange them on the desktop as
you wish. Many windows can also be docked to one another for easy management.
Docking—which means attaching windows to each other so that they move
together—helps you use screen space efficiently while maintaining fast access to
tools.

From the View menu, you can bring up any tool window and then dock it directly to
another. For example, when you first open Delphi in its default configuration, the
Code Explorer is docked to the left of the Code editor. You can add the Project
Manager to the first two to create three docked windows.

Main window
organized
differently.

On the Commands
page, select any
command and drag it
onto any toolbar.

On the Options page,
click Show tooltips to
make sure the hints for
components and
toolbar icons appear.
4-2 Q u i c k S t a r t

O r g a n i z i n g y o u r w o r k a r e a
To dock a window, click its title bar and drag it over the other window. When the
drag outline narrows into a rectangle and it snaps into a corner, release the mouse.
The two windows snap together.

Here the Project Manager and Code
Explorer are docked to the Code editor.

You can combine, or
“dock” windows with
either grabbers, as on
the right, or tabs, as
on page 5-4.

To get docked windows with
grabbers, release the
mouse when the drag
outline snaps to the
window’s corner.
C u s t o m i z i n g t h e d e s k t o p 4-3

O r g a n i z i n g y o u r w o r k a r e a
You can also dock tools to form tabbed windows.

To undock a window, double-click its grabber or tab, or click and drag the tab
outside of the docking area.

To turn off automatic docking, either press the Ctrl key while moving windows
around the screen, or choose Tools|Environment Options, click the Preferences page,
and uncheck the Auto drag docking check box.

For more information...
See “docking” in the online Help index.

Saving desktop layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE
includes a pick list of the available desktop layouts and two icons to make it easy to
customize the desktop.

Arrange the desktop as you want, including displaying, sizing, and docking
particular windows.

To get docked windows that are
tabbed, release the mouse before
the drag outline snaps to the other
window’s corner.

Set debug
desktop

Save current
desktop

Named desktop
settings are listed here.
4-4 Q u i c k S t a r t

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e
On the Desktops toolbar, click the Save current desktop icon or choose
View|Desktops|Save Desktop, and enter a name for your new layout.

For more information...
See “desktop layout” in the online Help index.

Customizing the Component palette
In its default configuration, the Component palette displays many useful objects
organized functionally onto tabbed pages. You can customize the Component palette
by:

• Hiding or rearranging components.
• Adding, removing, rearranging, or renaming pages.
• Creating component templates and adding them to the palette.
• Installing new components.

Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog box. You can open this dialog box in several ways:

• Choose Component|Configure Palette.
• Choose Tools|Environment Options and click the Palette tab.
• Right-click the Component palette and choose Properties.

Enter a name for the desktop layout
you want to save and click OK.

You can rearrange the palette
and add new pages.
C u s t o m i z i n g t h e d e s k t o p 4-5

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e
For more information...
Click the Help button in the Palette Properties dialog box.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
to reuse on other forms.

To create a component template, simply arrange one or more components on a form
and set their properties in the Object Inspector, and select all of the components by
dragging the mouse over them. Then choose Component|Create Component
Template. When the Component Template Information dialog box opens, select a
name for the template, the palette page on which you want it to appear, and an icon
to represent the template on the palette.

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

For more information...
See “templates, component” in the online Help index.

Installing component packages

Whether you write custom components or obtain them from a vendor, the
components must be compiled into a package before you can install them on the
Component palette.
4-6 Q u i c k S t a r t

C u s t o m i z i n g t h e C o m p o n e n t p a l e t t e
A package is a special DLL containing code that can be shared among Delphi
applications, the IDE, or both. Runtime packages provide functionality when a user
runs an application. Design-time packages are used to install components in the IDE.
Delphi packages have a .bpl extension.

If a third-party vendor’s components are already compiled into a package, either
follow the vendor’s instructions or choose Component|Install Packages.

For more information...
See “installing components” and “packages” in the online Help index.

Using frames
A frame (TFrame), like a form, is a container for components that you want to reuse.
A frame is more like a customized component than a form. Frames can be saved on
the Component palette for easy reuse and they can be nested within forms, other
frames, or other container objects. After a frame is created and saved, it continues to
function as a unit and to inherit changes from the components (including other
frames) it contains. When a frame is embedded in another frame or form, it continues
to inherit changes made to the frame from which it derives.

To open a new frame, choose File|New|Frame.

For more information...
See “frames” and “TFrame” in the Help index.

These components come preinstalled
in Delphi. When you install new
components from third-party vendors,
their package appears in this list.

Click Components to see what
components the package contains.

You can add whatever visual
or nonvisual components
you need to the frame. A new
unit is automatically added to
the Code editor.
C u s t o m i z i n g t h e d e s k t o p 4-7

S e t t i n g p r o j e c t o p t i o n s
Adding ActiveX controls
You can add ActiveX controls to the Component palette and use them in your Delphi
projects. Choose Component|Import ActiveX Control to open the Import ActiveX
dialog box. From here you can register new ActiveX controls or select an already
registered control for installation in the IDE. When you install an ActiveX control,
Delphi creates and compiles a “wrapper” unit file for it.

For more information...
Choose Component|Import ActiveX Control and click the Help button.

Setting project options
If you need to manage project directories and to specify form, application, compiler,
and linker options for your project, choose Project|Options. When you make
changes in the Project Options dialog box, your changes affect only the current
project; but you can also save your selections as the default settings for new projects.

Setting default project options

To save your selections as the default settings for all new projects, in the lower-left
corner of the Project Options dialog box, check Default. Checking Default writes the
current settings from the dialog box to the options file defproj.dof, located in the
Delphi7\Bin directory. To restore Delphi’s original default settings, delete or rename
the defproj.dof file.

For more information...
See “Project Options dialog box” in the online Help index.

Specifying project and form templates as the default
When you choose File|New|Application, Delphi creates a standard new application
with an empty form, unless you specify a project template as your default project. You
can save your own project as a template in the Object Repository on the Projects page
by choosing Project|Add to Repository (see “Adding templates to the Object
Repository” on page 4-9). Or you can choose from one of Delphi’s existing project
templates from the Object Repository (see “The Object Repository” on page 2-6).
4-8 Q u i c k S t a r t

S p e c i f y i n g p r o j e c t a n d f o r m t e m p l a t e s a s t h e d e f a u l t
To specify a project template as the default, choose Tools|Repository. In the Object
Repository dialog box, under Pages, select Projects. If you’ve saved a project as a
template on the Projects page, it appears in the Objects list. Select the template name,
check New Project, and click OK.

Once you’ve specified a project template as the default, Delphi opens it automatically
whenever you choose File|New|Application.

In the same way that you specify a default project, you can specify a default new form
and a default main form from a list of existing form templates in the Object Repository.
The default new form is the form created when you choose File|New|Form to add an
additional form to an open project. The default main form is the form created when
you open a new application. If you haven’t specified a default form, Delphi uses a
blank form.

You can override your default project or form temporarily by choosing File|New|
Other and selecting a different template from the New Items dialog box.

For more information...
See “templates, adding to Object Repository,” “projects, specifying default,” and
“forms, specifying default” in the online Help index.

Adding templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse and share
with other developers over a network. Reusing objects lets you build families of
applications with common user interfaces and functionality that reduces
development time and improves quality.

The Object Repository’s pages
contain project templates only,
form templates only, or a
combination of both.

To set a project template as the
default, select an item in the
Objects list and check New
Project.

To set a form template as the
default, select an item in the
Objects list and check New Form
or Main Form.
C u s t o m i z i n g t h e d e s k t o p 4-9

S e t t i n g t o o l p r e f e r e n c e s
For example, to add a project to the Repository as a template, first save the project
and choose Project|Add To Repository. Complete the Add to Repository dialog box.

The next time you open the New Items dialog box, your project template will appear
on the Projects page (or the page to which you had saved it). To make your template
the default every time you open Delphi, see “Specifying project and form templates
as the default” on page 4-8.

For more information...
See “templates, adding to Object Repository” in the online Help index.

Setting tool preferences
You can control many aspects of the appearance and behavior of the IDE, such as the
Form Designer, Object Inspector, and Code Explorer. These settings affect not just the
current project, but projects that you open and compile later. To change global IDE
settings for all projects, choose Tools|Environment Options.

For more information...
See “Environment Options dialog box” in the online Help index, or click the Help
button on any page in the Environment Options dialog box.

Customizing the Form Designer

The Designer page of the Tools|Environment Options dialog box has settings that
affect the Form Designer. For example, you can enable or disable the “snap to grid”
feature, which aligns components with the nearest grid line; you can also display or
hide the names, or captions, of nonvisual components you place on your form.

For more information...
In the Environment Options dialog box, click the Designer page and click the Help
button.

Enter a title, description,
and author. In the Page list
box, choose Projects so that
your project will appear on
the Repository’s Projects
tabbed page.
4-10 Q u i c k S t a r t

S e t t i n g t o o l p r e f e r e n c e s
Customizing the Code Editor

One tool you may want to customize right away is the Code editor. Several pages in
the Tools|Editor Options dialog box have settings for how you edit your code. For
example, you can choose keystroke mappings, fonts, margin widths, colors, syntax
highlighting, tabs, and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. To learn about these tools, see “Code
Insight” on page 2-7.

For more information...
In the Editor Options dialog box, click the Help button on the General, Display, Key
Mappings, Color, and Code Insight pages.

Customizing the Code Explorer

When you start Delphi, the Code Explorer (described in “The Code Explorer” on
page 2-12) opens automatically. If you don’t want Code Explorer to open
automatically, choose Tools|Environment Options, click the Explorer tab, and
uncheck Automatically show Explorer.

You can change the way the Code Explorer’s contents are grouped within the Code
Explorer by right-clicking in the Code Explorer, choosing Properties, and, under
Explorer categories, checking and unchecking the check boxes. If a category is
checked, elements in that category are grouped under a single node. If a category is
unchecked, each element in that category is displayed independently on the
diagram’s trunk. For example, if you uncheck the Published category, the Published
folder disappears but not the items in it.

For more information...
See “Code Explorer, Environment options” in the online Help index.

In the Code Explorer, you
can sort all source elements
alphabetically or in the order
in which they are declared
in the source file.

To display the folder for
each type of source
element in the Code
Explorer, check an
Explorer category.
C u s t o m i z i n g t h e d e s k t o p 4-11

4-12 Q u i c k S t a r t

Index

A
ActiveX

Component palette page 3-12
installing controls 4-8

adding items to Object Repository 2-6
ADO 3-10
applications

compiling and debugging 3-6
creating 3-1, 3-9
database 3-10
deploying 3-8
internationalizing 3-8
Web server 3-9

B
BDE 3-10
BDE Administrator 3-11
Borland Component Library for Cross Platform

(CLX) 3-5
Browser 2-13

C
character sets, extended 3-8
Class Completion 2-8
CLX

adding components 2-4
applications, creating 3-9
defined 3-5

code
event handlers 3-5
help in writing 2-7 to 2-8
viewing and editing 2-7 to 2-12
writing 3-5

code completion 2-7
Code editor

combining with other windows 4-2
customizing 4-11
using 2-7 to 2-9

Code Explorer
customizing 4-11
using 2-12

Code Parameters 2-7
Code Templates 2-7
compiling applications 3-6
component library 3-5

Component palette
adding custom components 3-11
adding pages 4-5
customizing 4-5 to 4-7
defined 2-4
using 3-2

component templates, creating 4-6
components

adding to a form 3-2
adding to Component palette 4-5
arranging on Component palette 4-5
creating custom 3-11
customizing 3-12, 4-6
installing 3-12, 4-6
setting properties 3-3

context menus, accessing 2-3
controls, adding to a form 3-2
cross-platform applications 3-9
customizing

Code editor 4-11
Code Explorer 4-11
Component palette 2-3
Form Designer 4-10
IDE 4-1 to 4-11

D
Data Dictionary 3-11
data modules

adding 3-2
creating 2-6

database applications, creating 3-10
Database Desktop 3-11
Database Explorer 3-11
dbExpress 3-10
debugging programs 3-6 to 3-7
default

project and form templates 4-8
project options 4-8

Delphi
customizing 4-1 to 4-11
introduction 1-1
programming 3-1
starting 2-1

deploying applications 3-8
desktop

organizing 4-1 to 4-5
saving layouts 4-4
I n d e x I-1

developer support 1-5
.dfm files 2-11
Diagram page 2-9
dialog boxes, in Object Repository 2-6
DLLs

creating 2-6
defined 3-12
deploying 3-8

docking windows 4-2 to 4-4

E
Editor Options dialog box 2-8, 4-11
Environment Options dialog box 2-8, 4-10
event handlers, defined 3-5
executables, deploying 3-8

F
files, form 2-11
Form Designer

customizing 4-10
defined 2-4

form files, viewing code 2-11
forms

adding components to 3-2
finding 2-6
main 4-9
specifying as default 4-9

frames 4-7

G
global symbols 2-13

H
Help, F1 1-4

I
IDE

customizing 4-1 to 4-11
defined 1-1
organizing 4-1
tour of 2-1

IMEs 3-8
information, finding 1-3
input method editors 3-8
installing custom components 4-6
integrated debugger 3-7
integrated desktop environment See IDE
InterBase 3-10
internationalizing applications 3-8

K
keystroke mappings 4-11
Kylix, defined 1-1

L
localizing applications 3-8

M
main form, defined 4-9
menus

context 2-3
organizing 2-3, 4-1

N
new features 1-3
new form, defined 4-9
New Items dialog box

saving templates to 4-8, 4-10
using 2-6

newsgroups 1-5

O
Object Inspector

defined 2-4
inline component references 3-4
using 3-3 to 3-4

Object Repository
adding templates to 4-8, 4-9
defined 2-6, 3-1
using 2-6

Object TreeView 2-5
objects, defined 3-5
ODBC 3-10
online Help files 1-4
options, setting for projects 4-8

P
packages 4-7
Paradox 3-10
parent-child relationships 2-5
product registration 1-2
programming with Delphi 3-1
programs

CLX applications 3-9
compiling and debugging 3-6
deploying 3-8
internationalizing 3-8
Web server applications 3-9
I-2 Q u i c k S t a r t

Project Browser 2-13 to 2-14
project groups 2-13
Project Manager 2-13
Project Options dialog box 4-8
project templates 4-9
projects

adding items to 2-6
creating 3-1
managing 2-13
setting options as default 4-8
specifying as default 4-8
types 3-8 to 3-12

properties, setting 3-3

R
registering Delphi 1-2
Resource DLL Wizard 3-8
right-click menus 2-3
running an application 3-6

S
saving desktop layouts 4-4
setting properties 3-3
source code, help with writing 2-7 to 2-8
SQL Explorer 3-11
starting Delphi 2-1
support services 1-5

T
tabbed windows, docking 4-4
technical support 1-5
templates

adding to Object Repository 4-9
specifying as default 4-8

to-do lists 2-14
tool windows, docking 4-2
toolbars 2-3

adding and deleting components from 4-2
organizing 4-1

Tooltip Expression Evaluation 2-7
Tooltip Symbol Insight 2-7
translation tools 3-8
tutorials 1-1
type libraries, defined 3-12
typographic conventions 1-6

U
user interfaces, creating 3-2

V
Visual Component Library (VCL)

adding components 2-4
using 3-5

W
Web Broker, introduction 3-9
Web server applications, creating 3-9
Web site, Borland 1-5
WebSnap, introduction 3-9
windows, combining 4-2
wizards, finding 2-6
writing code 3-5

X
.xfm files 2-11
I n d e x I-3

I-4 Q u i c k S t a r t

	Quick Start
	Contents
	Ch 1: Introduction
	What is Delphi?
	Registering Delphi
	Finding information
	Online Help
	F1 Help

	Developer support services and Web site
	Typographic conventions

	Ch 2: A tour of the environment
	Starting Delphi
	The IDE
	The menus and toolbars
	The Component Palette, Form Designer, and Object Inspector
	The Object TreeView
	The Object Repository
	The Code Editor
	Code Insight
	Class Completion
	Code Browsing
	The Diagram page
	Viewing form code

	The Code Explorer
	The Project Manager
	The Project Browser
	To-do lists

	Ch 3: Programming with Delphi
	Creating a project
	Adding data modules

	Building the user interface
	Placing components on a form
	Setting component properties

	Writing code
	Writing event handlers
	Using the component library

	Compiling and debugging projects
	Deploying applications
	Internationalizing applications
	Types of projects
	CLX applications
	Web server applications
	Database applications
	BDE Administrator
	SQL Explorer (Database Explorer)
	Database Desktop
	Data Dictionary

	Custom components
	DLLs
	COM and ActiveX
	Type libraries

	Ch 4: Customizing the desktop
	Organizing your work area
	Arranging menus and toolbars
	Docking tool windows
	Saving desktop layouts

	Customizing the Component palette
	Arranging the Component palette
	Creating component templates
	Installing component packages
	Using frames
	Adding ActiveX controls

	Setting project options
	Setting default project options

	Specifying project and form templates as the default
	Adding templates to the Object Repository

	Setting tool preferences
	Customizing the Form Designer
	Customizing the Code Editor
	Customizing the Code Explorer

	Index
	A - D
	E - P
	R - X

